Dense fluid transport for inelastic hard spheres.
نویسندگان
چکیده
The revised Enskog theory for inelastic hard spheres is considered as a model for rapid flow granular media at finite densities. A normal solution is obtained via the Chapman-Enskog method for states near the local homogeneous cooling state. The analysis is performed to first order in the spatial gradients, allowing identification of the Navier-Stokes order transport coefficients associated with the heat and momentum fluxes. In addition, the cooling rate is calculated to first order in the gradients and expressed in terms of the transport coefficients. The transport coefficients are determined from linear integral equations analogous to those for elastic collisions. The solubility conditions for these equations are confirmed and the transport coefficients are calculated as explicit functions of the density and restitution coefficient using a Sonine polynomial expansion. The results are not limited to small dissipation. Finally, the analysis is repeated using a simpler kinetic model. Excellent agreement is obtained with the results from the revised Enskog equation.
منابع مشابه
Transport coefficients of d-dimensional inelastic Maxwell models
Due to the mathematical complexity of the Boltzmann equation for inelastic hard spheres, a kinetic model has recently been proposed whereby the collision rate (which is proportional to the relative velocity for hard spheres) is replaced by an average velocity-independent value. The resulting inelastic Maxwell model has received a large amount of recent interest, especially in connection with th...
متن کاملTransport coefficients for the hard-sphere granular fluid.
In the preceding paper, linear response methods have been applied to obtain formally exact expressions for the parameters of Navier-Stokes order hydrodynamics. The analysis there is general, applying to both normal and granular fluids with a wide range of collision rules. Those results are specialized here to the case of smooth, inelastic, hard spheres with constant coefficient of normal restit...
متن کاملTransport coefficients of a granular gas of inelastic rough hard spheres.
The Boltzmann equation for inelastic and rough hard spheres is considered as a model of a dilute granular gas. In this model, the collisions are characterized by constant coefficients of normal and tangential restitution, and hence the translational and rotational degrees of freedom are coupled. A normal solution to the Boltzmann equation is obtained by means of the Chapman-Enskog method for st...
متن کاملLinear response and hydrodynamics for granular fluids.
A formal derivation of linear hydrodynamics for a granular fluid is given. The linear response to small spatial perturbations of a homogeneous reference state is studied in detail, using methods of nonequilibrium statistical mechanics. A transport matrix for macroscopic excitations in the fluid is defined in terms of the response functions. An expansion in the wave vector to second order allows...
متن کاملFluctuating Navier-Stokes equations for inelastic hard spheres or disks.
Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 59 5 Pt B شماره
صفحات -
تاریخ انتشار 1999